Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Data cache prefetching is a well-established optimization to overcome the limits of the cache hierarchy and keep the processor pipeline fed with data. In principle, accurate, well-timed prefetches can sidestep the majority of cache misses and dramatically improve performance. In practice, however, it is challenging to identify which data to prefetch and when to do so. In particular, data can be easily requested too early, causing eviction of useful data from the cache, or requested too late, failing to avoid cache misses. Competition for limited off-chip memory bandwidth must also be balanced between prefetches and a program's regular "demand" accesses. Due to these challenges, prefetching can both help and hurt performance, and the outcome can depend on program structure, decisions about what to prefetch and when to do it, and, as we demonstrate in a series of experiments, program input, processor microarchitecture, and their interaction as well. To try to meet these challenges, we have designed the RPG2 system for online prefetch injection and tuning. RPG2 is a pure-software system that operates on running C/C++ programs, profiling them, injecting prefetch instructions, and then tuning those prefetches to maximize performance. Across dozens of inputs, we find that RPG2 can provide speedups of up to 2.15×, comparable to the best profile-guided prefetching compilers, but can also respond when prefetching ends up being harmful and roll back to the original code - something that static compilers cannot. RPG2 improves prefetching robustness by preserving its performance benefits, while avoiding slowdowns.more » « less
-
null (Ed.)Modern data center applications exhibit deep software stacks, resulting in large instruction footprints that frequently cause instruction cache misses degrading performance, cost, and energy efficiency. Although numerous mechanisms have been proposed to mitigate instruction cache misses, they still fall short of ideal cache behavior, and furthermore, introduce significant hardware overheads. We first investigate why existing I-cache miss mitigation mechanisms achieve sub-optimal performance for data center applications. We find that widely-studied instruction prefetchers fall short due to wasteful prefetch-induced cache line evictions that are not handled by existing replacement policies. Existing replacement policies are unable to mitigate wasteful evictions since they lack complete knowledge of a data center application’s complex program behavior. To make existing replacement policies aware of these eviction-inducing program behaviors, we propose Ripple, a novel software-only technique that profiles programs and uses program context to inform the underlying replacement policy about efficient replacement decisions. Ripple carefully identifies program contexts that lead to I-cache misses and sparingly injects “cache line eviction” instructions in suitable program locations at link time. We evaluate Ripple using nine popular data center applications and demonstrate that Ripple enables any replacement policy to achieve speedup that is closer to that of an ideal I-cache. Specifically, Ripple achieves an average performance improvement of 1.6% (up to 2.13%) over prior work due to a mean 19% (up to 28.6%) I-cache miss reduction.more » « less
-
null (Ed.)Modern data center applications exhibit deep software stacks, resulting in large instruction footprints that frequently cause instruction cache misses degrading performance, cost, and energy efficiency. Although numerous mechanisms have been proposed to mitigate instruction cache misses, they still fall short of ideal cache behavior, and furthermore, introduce significant hardware overheads. We first investigate why existing I-cache miss mitigation mechanisms achieve sub-optimal performance for data center applications. We find that widely-studied instruction prefetchers fall short due to wasteful prefetch-induced cache line evictions that are not handled by existing replacement policies. Existing replacement policies are unable to mitigate wasteful evictions since they lack complete knowledge of a data center application’s complex program behavior. To make existing replacement policies aware of these eviction inducing program behaviors, we propose Ripple, a novel software-only technique that profiles programs and uses program context to inform the underlying replacement policy about efficient replacement decisions. Ripple carefully identifies program contexts that lead to I-cache misses and sparingly injects “cache line eviction” instructions in suitable program locations at link time. We evaluate Ripple using nine popular data center applications and demonstrate that Ripple enables any replacement policy to achieve speedup that is closer to that of an ideal I-cache. Specifically, Ripple achieves an average performance improvement of 1.6% (up to 2.13%) over prior work due to a mean 19% (up to 28.6%) I-cache miss reduction.more » « less
-
null (Ed.)Modern data center applications have rapidly expanding instruction footprints that lead to frequent instruction cache misses, increasing cost and degrading data center performance and energy efficiency. Mitigating instruction cache misses is challenging since existing techniques (1) require significant hardware modifications, (2) expect impractical on-chip storage, or (3) prefetch instructions based on inaccurate understanding of program miss behavior. To overcome these limitations, we first investigate the challenges of effective instruction prefetching. We then use insights derived from our investigation to develop I-SPY, a novel profile-driven prefetching technique. I-SPY uses dynamic miss profiles to drive an offline analysis of I-cache miss behavior, which it uses to inform prefetching decisions. Two key techniques underlie I-SPY's design: (1) conditional prefetching, which only prefetches instructions if the program context is known to lead to misses, and (2) prefetch coalescing, which merges multiple prefetches of non-contiguous cache lines into a single prefetch instruction. I-SPY exposes these techniques via a family of light-weight hardware code prefetch instructions. We study I-SPY in the context of nine data center applications and show that it provides an average of 15.5% (up to 45.9%) speedup and 95.9% (and up to 98.4%) reduction in instruction cache misses, outperforming the state-of-the-art prefetching technique by 22.5%. We show that I-SPY achieves performance improvements that are on average 90.5% of the performance of an ideal cache with no misses.more » « less
-
null (Ed.)Deterministic execution for GPUs is a desirable property as it helps with debuggability and reproducibility. It is also important for safety regulations, as safety critical workloads are starting to be deployed onto GPUs. Prior deterministic architectures, such as GPUDet, attempt to provide strong determinism for all types of workloads, incurring significant performance overheads due to the many restrictions that are required to satisfy determinism. We observe that a class of reduction workloads, such as graph applications and neural architecture search for machine learning, do not require such severe restrictions to preserve determinism. This motivates the design of our system, Deterministic Atomic Buffering (DAB), which provides deterministic execution with low area and performance overheads by focusing solely on ordering atomic instructions instead of all memory instructions. By scheduling atomic instructions deterministically with atomic buffering, the results of atomic operations are isolated initially and made visible in the future in a deterministic order. This allows the GPU to execute deterministically in parallel without having to serialize its threads for atomic operations as opposed to GPUDet. Our simulation results show that, for atomic-intensive applications, DAB performs 4× better than GPUDet and incurs only a 23% slowdown on average compared to a non-deterministic GPU architecture. We also characterize the bottlenecks and provide insights for future optimizations.more » « less
An official website of the United States government

Full Text Available